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Disturbance growth in boundary layers subjected
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(Received 28 May 1999 and in revised form 5 September 2000)

This paper aims at a description of boundary-layer flow which is subjected to free-
stream turbulence in the range from 1–6% and is based on both flow visualization
results and extensive hot-wire measurements. Such flows develop streamwise elon-
gated regions of high and low streamwise velocity which seem to lead to secondary
instability and breakdown to turbulence. The initial growth of the streaky structures is
found to be closely related to algebraic or transient growth theory. The data have been
used to determine streamwise and spanwise scales of the streaky structures. Both the
flow visualization and the hot-wire measurements show that close to the leading edge
the spanwise scale is large as compared to the boundary-layer thickness, but further
downstream the spanwise scale approaches the boundary-layer thickness. Wavenum-
ber spectra in both the streamwise and the spanwise directions were calculated. A
scaling for the streamwise structure of the disturbance was found, which allows us to
collapse the spectra from different downstream positions. The scaling combines the
facts that the streaky structures increase their streamwise length in the downstream
direction which becomes proportional to the boundary-layer thickness and that the
energy growth is algebraic, close to proportional to the downstream distance.

1. Introduction
Transition to turbulence in laminar boundary layers subjected to high levels of

free-stream turbulence (FST) can still not be reliably predicted, despite its technical
importance, e.g. in the case of boundary layers developing on gas turbine blades.
Under these conditions laminar boundary layers may exhibit a rapid breakdown
to turbulence, which cannot be explained by the traditional scenario based on the
growth of Tollmien–Schlichting (TS) waves, and is therefore usually denoted as bypass
transition. At present, there does not exist any reliable method for transition prediction
at high levels of FST (see e.g. Westin & Henkes 1997) and is a serious problem in the
design process for certain applications. For instance the chord Reynolds number on
a turbine blade in a low pressure turbine is relatively small (of the order of 105), and
therefore a significant part of the blade experiences laminar and/or transitional flow.

1.1. Previous experimental work

There has recently been several experimental studies with the aim to study boundary
layers under the influence of FST. Recent reviews are given by Kendall (1998) and in
the doctoral thesis of Westin (1997). We do not intend here to give a full review of

† Present address: Department of Mechanical Systems Engineering, Shinshu University, Nagano,
Japan.



150 M. Matsubara and P. H. Alfredsson

earlier studies, but will outline the present picture of the boundary-layer development,
with references to the relevant literature.

It is known from both flow visualization and hot-wire measurements that a bound-
ary layer subjected to FST develops unsteady streaky structures with high and low
streamwise velocity. The first reference to such disturbances is usually ascribed to
Klebanoff (1971), although already Dryden (1937) and Taylor (1939) reported some
experimental reults about boundary-layer disturbances which were associated with
FST. Also, Arnal & Juillen (1978) showed that at high levels of FST, i.e. higher than
about 0.5–1%, the dominant disturbances in the boundary layer are not TS-waves.
The energy of the dominant disturbances is found at rather low frequencies and
the maximum of the streamwise velocity disturbance is approximately located in the
middle of the boundary layer. They found that the amplitude of urms is in the range
5–7% of the free-stream velocity (U∞) before transition starts. As comparison, a
TS-wave has its maximum amplitude much closer to the wall and TS-waves break
down at amplitudes of the order of 1%.

Kendall (1985) observed elongated streamwise structures with narrow spanwise
scales in a laminar boundary layer subjected to FST and he denoted these disturbances
Klebanoff modes. He found that the maximum disturbance level in the boundary layer
grows in linear proportion to x1/2 (i.e. proportional to the laminar boundary-layer
thickness). Also, Westin et al. (1994) made detailed measurements of a laminar
boundary layer disturbed by FST and showed among other things that the Blasius
profile is only slightly modified, despite urms levels of about 10% inside the boundary
layer before breakdown. Their data confirmed that urms increases as x1/2 and they also
compiled data from other studies and showed that this was a general observation.
However, they showed that the growth rate as well as the level of urms where transition
occurs vary considerably between different studies.

A hypothesis is that breakdown to turbulence is caused through a secondary
instability developing on the streaks which leads to the formation of turbulent spots.
A study by Westin et al. (1998), where a single streaky structure was modelled through
a localized free-stream disturbance, showed that the disturbance increases in length but
decreases in amplitude as it propagates downstream in the boundary layer. A possible
triggering mechanism for the secondary instability could be Tollmien–Schlichting
waves that may coexist with the streaky structures. Such studies have been made by
Boiko et al. (1994), Grek, Kozlov & Ramazanov (1990) and Kosorygin & Polyakov
(1990). In the study of Boiko et al. (1994) it was found that the introduction of
TS-waves enhances the breakdown to turbulence. In a follow-up experiment to that
of Westin et al. (1998), Bakchinov et al. (1998) showed that even damped TS-waves
which are introduced together with a streaky structure develop strong nonlinearities
which lead to breakdown of the streaky structure and the formation of an incipient
spot. However, there may also be other sources behind the triggering of secondary
instabilities, such as the continuous forcing by the free-stream turbulence, which can
be viewed as a distributed small-scale disturbance, not necessarily giving rise to TS-
waves. Other experiments where the location and extent of the transitional region
were documented are the studies of Suder, O’Brien & Reshotko (1988) and Roach &
Brierly (1992).

The above description of the various stages in the transition process shows that
accurate physical modelling of several aspects is probably required to obtain a reliable
prediction method for transition in boundary layers subjected to FST. These processes
include the formation and growth of streaky structures, the development of secondary
instabilities, the formation of the incipient spot as well as the growth and merger of
turbulent spots.
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1.2. Non-modal disturbance growth

Ellingsen & Palm (1975) and Landahl (1980), proposed that three-dimensional dis-
turbances can grow algebraically in shear flows, a scenario which differs from the
traditional exponentially growing TS-wave disturbance. Landahl used the inviscid
normal vorticity equation to show that a disturbance in the normal vorticity may
grow linearly (algebraically) in time to infinite amplitude, if forced by the normal
velocity. This theory was later extended by Gustavsson (1991) to the viscous case. In
that case, viscosity will set a limit on the maximum growth, i.e. the disturbance will
ultimately decay. It is interesting to note, however, that a growth may occur also for
Reynolds numbers for which modal disturbances (i.e. TS-waves) would decay. He also
showed that, in channel flow, the growth rate scales with the Reynolds number, i.e. the
time to reach a certain growth is proportional to R−1 (R = UCLh/ν, where UCL is the
laminar centreline velocity, h is half the channel height and ν is the kinematic viscos-
ity). For infinitely long disturbances, Gustavsson found that the largest amplification
occurred for spanwise wavenumbers close to β = 2 (β = 2πh/λ, where λ is the span-
wise wavelength), although the wavenumber dependence was not very strong. Butler
& Farrell (1992) extended this work by determining the optimal perturbations for
plane Poiseuille and Couette flow as well as a (parallel) Blasius boundary-layer flow.

A drawback of the early studies is that they treat the temporal problem, i.e. how a
disturbance will grow in time. In a boundary layer, the appropriate viewpoint would
be to study disturbances that grow in space. It should be noted that in spatially
growing boundary-layer flows it is not necessarily true that algebraic growth will
be followed by viscous decay. On the contrary, Luchini (1996) showed the existence
of three-dimensional self-similar solutions where the streamwise disturbance velocity
grows as x0.213. (The coordinate system used in this paper is x for the streamwise
direction, where x = 0 is at the plate leading edge, y is the coordinate normal to the
plate with y = 0 at the plate, and z is the spanwise coordinate.) He also predicted
disturbance profiles of the streamwise velocity which are in excellent agreement with
recent measurements. This indicates that non-modal growth may be important for
boundary-layer transition in the case of excitation by three-dimensional disturbances
(such as localized roughness elements or free-stream turbulence).

Luchini (2000) showed that if optimal perturbations are used, i.e. perturbations
that maximize the energy growth, the energy growth is actually proportional to x (or
equivalently the streamwise disturbance velocity increases as x0.5). In his analysis the
disturbance with the largest growth at a given x is obtained when βδ∗ = 0.77 (δ∗
is the displacement thickness of the boundary layer). This means that the spanwise
size of the optimal disturbance is approximately 40% larger than the boundary-
layer thickness at a given downstream position and that the optimal spanwise scale
increases as x0.5 in the downstream direction.

Andersson, Berggren & Henningson (1999) worked along similar lines to Luchini
(2000) and found the same optimal spanwise scale. They showed that a fixed spanwise
wavenumber in terms of physical units also can give a similar, nearly linear initial
growth of the disturbance energy as well as disturbance profiles which are in good
agreement with measured r.m.s.-profiles in a boundary layer subjected to free-stream
turbulence. Furthermore, they argue that the Reynolds number for transition onset
is inversely proportional to the square of the FST intensity and they were able to
correlate data from several studies with this hypothesis. It should be pointed out
(e.g. see Waleffe 1997) that transient growth of streaky structures is only the first
step towards transition, the latter stages must involve nonlinear effects. The model of
Andersson et al. does not take into account any of the nonlinear processes which must
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be active before transition occurs, but is, on the other hand, successful in correlating
available data.

In the studies discussed so far, the receptivity mechanism of the boundary layer
has not been an issue, rather the studies have started when the disturbance has been
assumed to be inside the boundary layer already. Bertolotti (1997) studied the effect
of vortical modes in the free-stream on the development of disturbances in a Blasius
boundary layer using the parabolized stability equations (PSE). Low-frequency and
stationary modes were found to give disturbances in the boundary layer that are in
good agreement with experiments.

A different type of analysis is that of Goldstein and co-workers (see for instance
Goldstein & Wundrow 1998; Leib, Wundrow & Goldstein 1999), where the linear
boundary-region equations are solved assuming a certain free-stream disturbance
spectrum. Their calculations indicate that it is the low-frequency content of the
fluctuating transverse velocity components in the FST that actually triggers the
Klebanoff modes in the boundary layer, and that this is through a linear mechanism.
Their solution to the linear equations shows an initial growth of the streamwise
disturbance inside the boundary layer which is proportional to x1/2 and the disturbance
has its maximum in the centre of the boundary layer. Leib et al. were able to find
good quantitative agreement with the disturbance growth and amplitudes in several
experimental studies through this procedure.

1.3. Streaky structures, oblique transition and transient growth

Although several experimental studies have dealt with FST directly, some studies of
idealized geometries or disturbance sources may also be of interest in order to elucidate
the mechanisms behind the FST-induced transition. In particular, the so-called oblique
transition concept, which was introduced by Schmid & Henningson (1992), gives some
further insights into the processes. The starting point is the introduction of two oblique
waves of small but finite amplitude. The wave-pair can be characterized by (ω,±β),
where ω is their angular frequency and ±β their spanwise wavenumbers. They may
interact nonlinearly, and formally it can be stated that the first generation interaction
will give components characterized by (0, 0), (2ω, 0), (2ω,±2β) and (0,±2β), where
the fourth corresponds to a stationary, spanwise periodic disturbance. It was found by
Schmid & Henningson (1992) that initially the (0,±2β) mode reaches high amplitudes
through transient growth. The result is a streaky structure in the streamwise velocity.
Elofsson & Alfredsson (1998) verified experimentally the existence of the streaky
structures in measurements on the interaction between a pair of oblique waves in
plane Poiseuille flow.

The oblique transition scenario consists of the following three stages: first, nonlin-
ear generation of streamwise vortices by a pair of oblique waves giving rise to streaks,
secondly, transient growth of streaks, and thirdly, breakdown of the flow owing to a
secondary instability of the streaks provided their amplitude exceeds a threshold am-
plitude. It seems probable that FST-induced transition includes the two latter phases
in this scenario; however, the intial creation of the streamwise oriented structures
is different. The secondary-instability phase has recently been investigated theoreti-
cally/numerically by Reddy et al. (1998) and by Elofsson, Kawakami & Alfredsson
(1999) in plane channel flows. The results of Reddy et al., obtained from both direct
numerical simulations and stability calculations, indicate that the secondary instability
is due mainly to spanwise inflectional profiles associated with the streaky structures.
These findings were corroborated by the experiments by Elofsson et al. who also
showed that the most amplified secondary wave has a streamwise wavenumber close
to the spanwise wavenumber of the streaky structure. They concluded that transition
originates from this secondary instability.
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Figure 1. Experimental set-up. (a) Set-up for hot-wire measurements;
(b) set-up for flow visualization.

1.4. Motivation of present work

The present investigation uses flow visualization and hot-wire anemometry to de-
scribe the FST-induced disturbances inside a boundary layer both qualitatively and
quantitatively. It also makes extensive comparisons with theoretical work dealing with
non-modal growth, as well as other experiments which have studied FST dominated
transition or other types of transition where transiently growing disturbances is the
first step towards transition. In § 2 we describe the experimental set-up and mea-
surement techniques, i.e. the wind tunnel, turbulence grids, flat plate, as well as the
hot-wire and flow visualization set-ups, and finally the data evaluation procedures.
Section 3 contains some basic results of the boundary-layer flow, such as velocity
data (mean velocity and r.m.s. distributions), integral boundary parameters, etc. as
well as some data showing the intermittency as a measure of the stage of transition.
The main part of the present work is contained in § 4 where both flow-visualization
and hot-wire data are presented, analysed and compared. Various types of scaling of
the results are carried out. The results are discussed in § 5 together with comparisons
with other investigations.

2. Experimental description
2.1. Set-up

The experiments were made in the MTL wind tunnel at KTH, Stockholm. A diagram
of the experimental set-up is given in figure 1. The test section is 1.2 m wide, 0.8 m
high and 7 m long, and the horizontal test plate spans the whole width of the test
section. The test plate is mounted on two rails which run along the test-section floor
and these position the test surface approximately 60 cm from the test-section ceiling.
The test-plate leading edge is located 1.6 m from the start of the test section and
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Grid Tu (%) M (mm) d (mm) Bar geometry xgrid (m)

A 2.2 36 6 round −1.6
B 1.5 23 3.5 round −1.6
E 6.6 50 10 square −1.0

Table 1. Characteristics of the grids used. M is the mesh width, d the bar diameter and Tu the
turbulence level at x = 0.

the working length of the plate is 2.16 m. An extra plate section of 2 m was added
downstream of the test plate and was followed by a trailing-edge flap. The extra
plate section was installed in order to minimize the influence of the trailing-edge flap
on the boundary layer at the end of the test plate. The trailing-edge flap made it
possible to position the stagnation line at the leading edge, on the upper side of the
plate to avoid separation. The asymmetric leading edge of the flat plate was specially
designed for this set-up to minimize the pressure gradient on the plate upper side.
Further details of the plate can be found in Westin et al. (1994).

The free-stream turbulence was generated by grids of various sizes mounted in front
of the plate in the test section. In the present study, three different grids were used
and the data of the grids are given in table 1. The distance from the grid to the plate
leading edge was 1.6 m (grids A and B) or 1.0 m (grid E). The development length for
the grid-generated turbulence was, in all cases, larger than 20 mesh widths, which is
sufficient to obtain a fairly homogeneous turbulence structure. The turbulence level
at the plate leading edge was in the range 1.5–6.6% depending on the grid used. For
all grids, the Taylor scale for the transverse velocity component of the FST was 5 mm
(±1 mm) at U∞ = 8 m s−1 as determined from both autocorrelation and two-probe
correlation hot-wire (X-probe) measurements.

2.2. Measurement techniques

Flow visualization was carried out by letting smoke seep slowly through a spanwise
slot (1 mm wide in the streamwise direction and 400 mm long in the spanwise direc-
tion). The slot was located 175 mm from the leading edge of the flat plate. In the
absence of grids in the tunnel, the smoke formed a homogeneous layer very close
to the black-painted surface. Both video and photographic recordings of the flow
structures were made. The cameras were mounted at the top of the test section, and
optical access was obtained through a hole at the centreline of the ceiling. The light
source for the still photographs was an ordinary flashlight mounted at one of the
sidewalls inside the wind tunnel, approximately 3 m downstream of the plate leading
edge. The light source for the video recordings was a 1000 W floodlight which was
also mounted inside the wind tunnel.

The velocity measurements were made with hot-wire anemometry, and for details
of calibration procedures and measurement accuracy see Westin et al. (1994). In the
present experiments, the free-stream velocity was in the range up to 12 m s−1. The
wind tunnel is equipped with a traversing system which in the present set-up allows
movements along the test section and normal to the plate. At the end of the sting
a small traverse is mounted which allows one probe to be moved in the spanwise
direction, whereas another probe is fixed to the sting. The movement with this traverse
is limited to 150 mm, but, in the present study, the maximum spanwise separation of
the probes was 60 mm. It is important that the two probes are located at the same
y-position and it was checked by comparing the mean velocity measured by the two
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probes inside the boundary-layer. For all measurements, the variation of the mean
velocity between the probes was within ±5%.

2.3. Data evaluation procedure

Both hot-wire data and flow-visualization sequences were used to evaluate the span-
wise scales of the structures within the boundary layer.

Video sequences of the smoke visualization could be analysed by recording a line
in the picture, i.e. a line at a fixed x, over a long period of time. In this way, a picture
of the smoke pattern at this x-position is given as a function of time and a spanwise
correlation can be determined from the picture.

Two types of spectra were evaluated from the hot-wire data, namely, streamwise
wavenumber spectra which were obtained from the frequency spectra measured by
the hot-wire at a fixed x-position and converted to wavenumber using the free-stream
velocity and spanwise wavenumber spectra which were calculated from data taken
simultaneously with two hot wires separated in the spanwise direction.

The streamwise wavenumber spectra were calculated from the energy density
spectra obtained from a fast Fourier transform-analysis of the hot-wire signal ef(f),
where the frequency was converted to a wavenumber through

α =
2πf

U∞
.

We then make the wavenumber non-dimensional with the local displacement thickness
obtained from the Blasius solution, i.e. δ∗ = 1.72

√
νx/U∞ giving α∗ = αδ∗. This will

give us the wavenumber spectral density as

Eα(α
∗) =

U∞
2πδ∗

ef.

In order to compare spectra obtained at different free-stream velocities, we will first
normalize the spectral energy with U2∞. In order to take into account the growth of
the disturbance energy in the x-direction (as will be shown in § 3, the energy grows
linearly with x), we assume that the growth in energy is proportional to Rex, which
is also in accordance with the theoretical argument presented in § 1. Finally, our
normalized spectral density can be written as

E∗α =
Eα

U2∞Rex
.

The spanwise wavenumber spectra were obtained from a Fourier transformation
of the spanwise correlation function, using an interpolation scheme to have con-
stant spacing between grid points. Typically, the spanwise correlation function was
determined at 45 different spacings.

3. Basic flow data
This section gives an overview of mean flow data which will be useful to have as

a background when studying the flow structures of the transitional boundary layer.
We show data only for one case, but the boundary-layer development is similar for
all cases studied.

Figure 2 gives an overview of the boundary-layer development. Figure 2(a) shows
the mean velocity profiles starting at x = 100 mm with intervals of 200 mm up to
1900 mm for the case of Grid B and with a free-stream velocity of U∞ = 12 m s−1.
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Figure 2. Hot-wire measurements at different downstream positions of the streamwise veloc-
ity component inside the boundary layer. Grid B. U∞ = 12 m s−1. (a) Mean velocity (U),
x = 100, 300, 500, . . . , 1900 mm. (b) Deviation of the mean velocity from the Blasius solution, nor-
malised with its maximum value, ◦, x = 700 mm;4, x = 800 mm; �, x = 900 mm;×, x = 1000 mm;•, x = 1100 mm. (c) urms-Distributions for the same x-positions as in (a). (d) •, maximum of u2

rms;4, position of maximum of urms as function of Rex; − ·−, y/δ∗ = 1.30; −−−, y+ ≈ 15.

The boundary-layer behaviour was illustrated with such a high free-stream velocity
because for this case, the boundary layer goes through all its main stages, namely
the non-modal growth region, the secondary instability stage, the intermittent spot
region and the fully developed turbulent boundary-layer region. The y-coordinate is
scaled with δ∗ which is the displacement thickness for a laminar boundary layer based
on the length from the leading edge. Near the leading edge, the boundary layer is
very close to the Blasius form, whereas further downstrean it starts to deviate, such
that an increased velocity is observed in the inner half of the boundary layer and a
decrease in the outer half. Figure 2(b) shows this behaviour for five positions in the
range 700 mm < x < 1100 mm, where the amplitude of the deviation is scaled with its
maximum value. The deviation is seen to collapse nicely for the different x-positions,
showing a nearly self-similar development (see also Talamelli, Westin & Alfredsson
2000). The increase close to the wall means an increased skin friction as compared
with the Blasius boundary layer.

The distribution of urms, for small x shows a maximum approximately in the
middle of the laminar boundary layer (figure 2c). However, as the flow becomes
turbulent, the maximum shifts towards the wall, becomes more peaky, whereafter
further downstream its amplitude starts to decrease. In figure 2(d) the maximum
value of u2

rms is shown as a function of the Reynolds number based on x, and it
is clearly shown that, during the initial phase, the growth in u2

rms is linear with x.
Thereafter, it increases faster, reaches a maximum and then saturates. Also plotted
in this figure is the position of the maximum in the urms-distribution, it is constant at
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flow. (b) ◦, shape factor (H12) for full signal; ×, H12 measured during laminar periods; +, H12

measured during turbulent periods; 4, intermittency factor γ. Same data as in figure 2.

y/δ∗ = 1.3 during the linear growth region, but further downstream it becomes closer
to the wall. For a turbulent boundary layer, one would expect the maximum of urms
to be located at y+ ≈ 15, and an estimate of this position is given in figure 2(d).

Figure 3 shows the development of some integral parameters of the boundary layer.
In figure 3(a) the measured displacement (δ1) and momentum-loss (δ2) thicknesses
are shown, together with lines showing the theoretical development for a Blasius
boundary layer. In the transitional region, δ1 decreases slightly whereas δ2 increases
above the Blasius curve. The latter is related to the fact that the average skin friction
increases owing to the occurrence of turbulent spots. This region, i.e. the region in
between the Blasius-like and the turbulent regions, is usually called the intermittent
region, in the sense that turbulent spots occur intermittently and grow as they travel
downstream. This region can therefore be viewed as being composed of laminar-like
and turbulent-like periods with some kind of blending period in between.

In an analysis of this type of transitional flows, discrimination between turbulent
and laminar flow is valuable, not only to estimate the intermittency function, but
also to obtain separated statistics of the measured data into laminar and turbulent
cases. Several methods for the discrimination have been proposed which use some
criterion function with a threshold to determine the flow status. One difficulty is that
the threshold value directly affects the result of the intermittency estimate. Kuan &
Wang (1990) developed a general method to determine the threshold, the so-called
dual-slope method, which was further developed by Matsubara, Alfredsson & Westin
(1998). The latter approach gave a value of γ that was fairly independent of the
y-position inside the boundary layer at which the measurements were made.

With a method to distinguish laminar and turbulent periods of the signal it is
possible to obtain a better understanding of the transitional region. In figure 3(b),
the distribution of γ is shown, which has the expected behaviour of zero value for
small Rex and approaches 1 for high values. The shape factor H = δ1/δ2 starts at
around 2.6 and decreases to a value of 1.4 in the turbulent region, a value which is
consistent with that to be expected for turbulent boundary layers at this Reynolds
number. Also plotted in both figures 3(a) and 3(b) are the values obtained when
sorting the signal into laminar and turbulent parts. In the laminar part, the shape
factor decreases slightly with increasing Rex. Figure 2(b) shows that in this region
there is an increase in mean velocity near the wall and a decrease further out. The
effect on the displacement thickness is small, but leads to an increase in δ2 which
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Figure 4. Flow visualization of streaky structures in boundary layers affected by FST. The flow
direction is from left to right. The streamwise extent of pictures is 220 mm < x < 700 mm. The
smoke slot is positioned at x = 175 mm. (a) Grid A, U∞ = 6 m s−1; (b) grid A, U∞ = 8 m s−1;
(c) grid E, U∞ = 2 m s−1; (d) grid E, U∞ = 3 m s−1.

lowers the shape factor. The change in H12 is a direct consequence of the nonlinear
interaction between the streaky structures and the mean flow. In the turbulent region,
the formation and propagation of turbulent spots contribute to the skin friction, and,
therefore, an increase in δ2.

4. Measurements of disturbance structure
In this section we will analyse the experimental results obtained both from flow

visualization and two-probe hot-wire measurements in terms of the structure of the
transitional boundary layer.

4.1. Flow-visualization data

Figure 4 shows flow-visualization results for grids B and E, having 1.5% and 6.6%
turbulence level at the plate leading edge, respectively. All photographs show an
area for which 220 mm < x < 700 mm and −150 mm < z < 150 mm. For the low-
turbulence case, the free-stream velocities in the two photographs are 6 and 8 m s−1,
respectively (the corresponding Reynolds-number ranges based on x for the two cases
are 0.9–2.8× 105 and 1.2–3.7× 105, respectively). The streaky structure of the smoke
layer is apparent in both cases and the streaks have a spanwise scale of around
1 cm, although the scale seems somewhat smaller at the higher velocity. For both
cases, some streaks are seen to develop a streamwise waviness of relatively short
wavelength. These wiggles usually develop into turbulent spots, and in the upper half
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of figure 4(a) an incipient spot can be distinguished. At the downstream end of figure
4(b) around z = 0 mm, a fully developed turbulent spot can be seen. The turbulent
region of the spot is shown as a diffuse light region and it has the characteristic
downstream-pointing V-shape. Behind the spot there is a lack of smoke, owing to the
fact that when the spot passed over the smoke layer the smoke was mixed into the
spot and then convected with the spot.

For the high-turbulence case shown in figures 4(c) and 4(d) the velocities are 2
and 3 m s−1, respectively (the corresponding Reynolds-number ranges based on x for
the two cases are 0.3–0.9 × 105 and 0.44–1.4 × 105, respectively). Also here streaky
structures are observed, although the spanwise scale is larger in this case. This is, to
some extent, due to the fact that the turbulence scales generated by grid E at these
velocities are larger, but may also depend on the fact that the boundary layer is
thicker owing to the lower free-stream velocities. Also here a wavy type of motion
may be observed on the streaks before they break down to turbulence; however,
turbulent spots cannot be distinguished easily in this case.

In figure 5, a typical sequence showing the development of a streak instability is
shown. The time between frames is 20 ms. The free-stream velocity is 2 m s−1 and the
speed of the structure was estimated to 0.5U∞. It can be seen that the streak first
becomes wavy, the wave amplitude increases and that suddenly there is a break up
of the streaky structure, which is observed through dispersion of the smoke.

The streamwise lengthscale of the streaky structure increases in the downstream
direction. This becomes evident by analysing video recordings choosing one line of the
CCD camera at three different x-positions and plotting this line as function of time. In
figure 6 the resulting pictures are shown for x = 360, 720 and 1000 mm. The spanwise
size is approximately 300 mm and the time period is 5 s. The data are obtained using
grid E at U∞ = 1.2 m s−1. The size of the streamwise scale is seen to increase with the
downstream position. At x = 1000 mm some streaks can be identified for about half
the recorded time. For the most upstream x-position the scales seem rather short,
however, it should be borne in mind that the flow-visualization pictures using smoke
show an integrated picture of the development of the smoke layer, and the time
available to redistribute the smoke increases in the downstream direction.

The spanwise scale of the streaks can be estimated from figures such as these,
both by direct observation, and also by determining the spanwise correlation of the
light intensity. Figure 7 shows such correlation measurements for data obtained with
grid A. The correlation function has the expected variation with ∆z, showing a zero
crossing around 5 mm and then a minimum (this position will be denoted by ∆zmin,
closely corresponding to half the streak spacing) whereafter it approaches zero.

In figure 8, we show the value ∆zmin for two different grids at various velocities.
The correlation functions were determined at 8 downstream positions in each case. It
is shown in figure 8(a) that the variation in physical units is not so large along the
plate, for some cases it decreases and for others it increases. However, by scaling ∆zmin
with the displacement thickness (calculated based on the distance from the leading
edge) it is interesting to note that all data seem to approach a value of approximately
3δ∗ at the most downstream position. This value corresponds approximately to the
boundary-layer thickness of a Blasius boundary-layer.

4.2. Hot-wire data

In the following, we will discuss measurements of the streamwise velocity with one
or two probes. Figure 9 shows time signals and spectra obtained at five y-positions,
where the largest y is in the free-stream and the others are distributed throughout
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Figure 5. Sequence of streak breakdown with 20 ms between pictures. Grid E. U∞ = 2 m s−1.
400 mm < x < 600 mm.

the boundary layer. As can be seen the character of the signal changes dramatically
as the plate is approached. This can also be clearly seen in the spectra (figure 9b)
where the low-frequency content is seen to increase and the high-frequency content
to decrease as compared to the free stream. As shown in figure 2(c) the maximum in
urms corresponds roughly to y/δ∗ = 1.3 and it is clear from the spectra that a large
contribution to the energy in this region is from the low frequencies.

In figure 10 two-point spanwise correlations are shown for all three grids (A,
B and E) at three different downstream positions, x = 50, 200 and 600 mm. The
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(a) (b) (c)

Figure 6. Records over time (horizontal scale corresponds to 5 s) at three different x-positions
obtained from video signal. Width (vertical scale) of picture is approximately 300 mm. Grid E.
U∞ = 1.2 m s−1. (a) x = 360 mm; (b) x = 720 mm; (c) x = 1000 mm.
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Figure 7. Correlation function of brightness in spanwise direction obtained from records like
those in figure 6. Grid A. ×, x = 720 mm, U∞ = 6.0 m s−1; +, x = 1000 mm, U∞ = 6.0 m s−1;◦, x = 500 mm, U∞ = 8.0 m s−1; 4, x = 1000 mm, U∞ = 8.0 m s−1.

measurements with grids A and B are at U∞ = 6.0 m s−1 whereas U∞ = 3.0 m s−1 for
grid E. Figure 10(a) shows the correlations in the free stream where the spanwise
separation distance has been normalized with the grid mesh width. As can be seen,
the data for grids A and E collapse fairly well, however, grid B shows a slight shift at
short separations. As was noted previously, all grids have a Taylor microscale for the
transverse velocity component of approximately 5 mm at U∞ = 8 m s−1, and since the
mesh width is smaller for grid B than for grid A the shift in figure 10(a) is consistent
with a constant Taylor microscale. However, the smaller free-stream velocity for grid
E in this case leads to a larger Taylor microscale, which may explain the collapse of
the correlations between grids A and E.

Figures 10(b) to 10(d) show measurements for the different grids made at the
position of maximum urms, but also in the free stream for comparison. The boundary-
layer thickness is approximately 3.5 times larger at x = 600 mm as compared to
x = 50 mm, but as can be seen the correlation function for small separations (<5 mm)
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Figure 8. The spanwise distance to the first minimum (∆zmin) in the two-point correlation as
function of downstream distance for two different grids obtained from correlation functions such
as those in figure 7. Grid B: �, U∞ = 3.0 m s−1; 4, U∞ = 6.0 m s−1; ◦, U∞ = 8.0 m s−1. Grid E:
×, U∞ = 1.2 m s−1; +, U∞ = 1.7 m s−1; •, U∞ = 2.0 m s−1. (a) Data in physical measure; (b) scaled
with the local boundary-layer displacement thickness.
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Figure 9. Hot-wire measurements at U∞ = 12 m s−1 and x = 500 mm. (a) Time signals from 4
different heights inside the boundary layer and one in the free stream; (b) the corresponding spectra
· · ·, y/δ∗ = 17.8; − − −, y/δ∗ = 1.78; − · −, y/δ∗ = 1.05; − · · −, y/δ∗ = 0.43; ——–, y/δ∗ = 0.25.
In (a) the same heights are shown and are distinguished through their mean velocity.

is independent of x. Inside the boundary layer, the correlation function has a clear
minimum for the two most downstream positions. These minima can be used to
estimate the spanwise scale of the disturbance. In figure 11, the distance to this
minimum normalized with the local displacement thickness is plotted as a function of
the Reynolds number for three different grids. The spanwise size of the disturbance
initially differs between the grids but seems to asymptotically approach a value close
to 3δ∗. These results are in accordance with those obtained from the flow visualization
in figure 8(b) and will be further discussed in § 5.

Another way to illustrate the structure inside the boundary layer is through spanwise
correlation measurements at various values of y and showing the results in terms of
a contour plot for the correlation function. This is done in figure 12 (U∞ = 5.0 m s−1,
x = 1600 mm) where it is clearly shown how a region of negative correlation appears
in the boundary layer. The boundary-layer thickness is here approximately 11 mm
and the region of negative correlation is confined inside the boundary layer. This
region has an aspect ratio of about 1 and the minimum value is around −0.35. The
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Figure 10. Spanwise correlation obtained from two hot-wire probes. (a) Measurements in the free
stream with three different grids: ◦, grid A; �, grid B; ∆, grid E, spanwise separation normalized
with the grid mesh width. For each grid, measurements are made at x = 50, 200 and 600 mm.
(b)–(d) Measurements in the free stream (filled symbols) and at y/δ∗ = 1.2 (unfilled symbols).◦, x = 50 mm; ∆, x = 200 mm; �, x = 600 mm. (b) Grid A, U∞ = 6.0 m s−1. (c) Grid B,
U∞ = 6.0 m s−1. (d) Grid E, U∞ = 3.0 m s−1.
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Figure 11. Spanwise distance to first minimum obtained from correlations such as those in
figure 10. ◦, grid A; 4, grid B; ×, grid E.

figure clearly support the view that the dominating structure in the boundary layer
consists of high- and low-speed regions, with an average separation of 2δ (≈ 6δ∗).

Figure 13 shows both (a) streamwise, and (b) spanwise wavenumber spectra of the
streamwise velocity measured at y/δ∗ = 1.2. The spanwise spectral results are based
on simultaneous velocity measurements at two spanwise positions and obtained by
taking the Fourier transform of each time signal. From these transformed signals
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Figure 12. Contour map of spanwise correlation in (y, z)-plane with grid B. x = 1600 mm,
U∞ = 5.0 m s−1. Contour spacing is 0.1 and negative contours are dashed. Number of points
in y = 15, in z = 26.
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Figure 13. Typical spectra for different downstream positions. Grid A. U∞ = 5.0 m s−1. (a) Stream-
wise wavenumber spectra, obtained from frequency spectra, α = 2πf/U∞; (b) spanwise wavenumber
spectra. For both (a) and (b), spectra are obtained at 15 different x-positions, the spectra can
be distinguished by the trend that increasing x shifts the spectra upwards. − · −, x = 50, 80;
——–, x = 120, 150, 200, 250, 300, 400, 500; −−−, 600, 800, 1000, 1200, 1600, 2000 mm.

the spanwise correlation for each of the frequency components can be calculated by
multiplication of the complex Fourier coefficients. To obtain the power spectra, the
Fourier transform of the spanwise correlations finally has to be taken. The streamwise
spectra (obtained from the frequency spectra) in figure 13(a) show that for small x the
low wavenumber region increases, whereafter the energy growth also occurs for high
wavenumbers. This is consistent with the view that longitudinal streaks increase in
amplitude (growth at low wavenumbers), whereafter they break down to turbulence
(growth at high wavenumbers). In the spanwise spectra (figure 13b), the amplitude
decreases slightly with β and the overall amplitude increases with x as expected.

It is possible to further illustrate the downstream development of the disturbance
energy by an appropriate scaling of the spectra shown in figure 13. For the spanwise
spectra the energy is scaled with Rex, i.e. if the energy is growing linearly with x
as assumed for non-modal growth, the spectra should collapse. Figure 14(b) does
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Figure 14. Non-dimensionalized wavenumber spectra of figure 13, (a) streamwise wavenumber
spectra, wavenumber scaled with local displacement thickness according to Blasius solution, and
energy scaled with Rex; (b) spanwise wavenumber spectra, energy scaled with Rex.
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Figure 15. Two dimensional wavenumber spectra. Grid B. U∞ = 5.0 m s−1. (a) x = 200 mm;
(b) x = 800 mm. Contour spacing is 10% of maximum value.

indeed show such a collapse, except for the x-positions furthest downstream. Note
also that the spanwise coordinate is still dimensional. It was found that this gave the
best collapse of the data. This may be compared with the results obtained from the
correlation measurements in figure 8 where it was found that the position of minimum
correlation was almost constant in physical size for each grid. On the other hand,
figure 14(a) shows a remarkable collapse if the streamwise wavenumber is scaled
with δ∗ and the energy scaled similarly. All spectra in the low wavenumber region
are found to collapse giving a strong indication for non-modal growth of streamwise
oriented structures. The finding that the streamwise wavenumber scales with δ∗, i.e.
x1/2 was unexpected, but was found also for the other grids used.

Another way to illustrate the disturbance structure in the boundary layer is to
construct two-dimensional wavenumber spectra. The results of such an evaluation
are displayed in figure 15 where the spectra at two x-positions are shown, x = 200 mm
and x = 800 mm. The spanwise wavenumber is dimensional at both x-positions. The
streamwise wavenumber, on the other hand, is scaled with δ∗, whereas the amplitudes
of the spectra are normalized with their maximum values. The clear similarity of the
two spectra is evident, and the maximum energy peak located at α = 0 again indicates
the dominance of streamwise oriented structures.
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Figure 16. Comparison to the optimal disturbance growth theory (Luchini 2000). urms-profiles,◦, x = 200 mm; •, x = 300 mm; �, x = 400 mm; ×, x = 500 mm; 4, x = 600 mm; +, x = 700 mm;
——–, theory.

5. Discussion and summary
The present work is an extensive study of the influence of free-stream turbulence

on the disturbance development in laminar boundary layers and the subsequent
breakdown to turbulence. The data presented in this article is a concentrate of several
years of experiments, but chosen to show the significant features of the disturbance
structure and its growth. The interpretations of the initial stages of the disturbance
behaviour are strongly influenced by recent work on non-modal (transient) growth
in shear flows. The breakdown of the streaky structures seems to be associated with
secondary instability which develops owing to the influence of high and low-speed
fluid regions.

We have presented results both from smoke flow visualization and two-point hot-
wire measurements. It is, at first, not obvious how the smoke field is correlated
to the velocity field. Recent results obtained by simultaneous PIV-measurements
and smoke visualization (Alfredsson & Matsubara 2000) clearly indicate that the
smoke-filled streaky regions correspond to regions of lower velocity than the mean.
Correspondingly, the smoke-free regions represent high streamwise velocity.

The measurements of the streamwise velocity disturbance (urms, see figure 2c, d)
show how the initial growth is proportional to x1/2. This is in accordance with Luchini
(2000). Also, the disturbance distribution is in accordance with this theory, see figure
16. Here, several profiles of urms obtained at various x-positions are normalized with
their respective maximum and, as can be seen, these profiles are self-similar over most
of the boundary layer. At the outer edge of the boundary layer, the experiments do not
tend to zero since the free-stream turbulence is still present, whereas in the theory, the
disturbance outside the boundary layer is zero. It should be pointed out that both the
growth and disturbance profiles obtained with other theoretical approaches, such as
those of Andersson et al. (1999) and Goldstein & Wundrow (1998) give similar results.

An important issue is the spanwise scale of the streaky structure which we
have investigated through correlation measurements using both hot-wire and flow-
visualization data. On the one hand, both flow visualization and hot-wire measure-
ments in the present work show that there is no dramatic change in the spanwise
scale (in physical units) with downstream distance. On the other hand, it seems that
the scale approaches the boundary-layer thickness (see figures 8b and 11). This may
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be due to an initially strong mismatch between the scales in the free-stream turbu-
lence and the optimal disturbance in the boundary layer, but as the boundary layer
grows, there is a better match between the initial scale and the optimal disturbance
size. In the theoretical work by Luchini (2000) and Andersson et al. (1999), it was
found that the optimal scale was approximately 1.4δ. In these studies, only the linear
development of the disturbance is studied and it is clear that, in the region where the
spanwise size of the disturbance in our case approaches the boundary-layer thickness,
the amplitude is fairly high and the disturbance can no longer be viewed as linear.

The contour map of the correlation function (figure 12) shows that the dominant
structures inside the boundary layer consist of regions of high- and low-speed fluid.
It also shows that the height of the structure is close to the boundary-layer thickness
and that its cross-flow aspect ratio is approximately 1 far from the leading edge.

The flow visualizations show that the length of the streamwise structures increase
in the downstream direction (see e.g. figure 6). This is also seen from hot-wire spectra
using the Taylor hypothesis. From the spectral data, it was seen that the streamwise
length of the structures are proportional to δ∗ or x1/2. This was an unexpected new
finding and there is so far no theoretical explanation for this result. The spanwise
spectra, on the other hand, seem to be fairly independent of the downstream distance
(figure 14b), if the wavenumber is plotted in physical units. Similar results are obtained
from the two-point correlations (see figure 10). The spectra also show an astonishing
similarity when scaled as in figure 14. Similar results were also obtained for various
free-stream velocities if the energy was scaled with the free-stream velocity squared.
For transition prediction methods, these scalings may be a valuable finding if it is
possible to find a relation between the disturbance energy and the breakdown.
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